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Abstract—The penalty incurred by imposing a finite delay
constraint in lossless source coding of a memoryless source is
investigated. It is well known that for the so-called block-to-
variable and variable-to-variable codes, the redundancy decays
at best polynomially with the delay, which in this case is identified
with the block or maximal phrase length, respectively. In stark
contrast, it is shown that the redundancy can be made to
decay exponentially with the delay constraint. The corresponding
redundancy-delay exponent is shown to be bounded from below
by the Rényi entropy of order 2 of the source, and from above
(for almost all sources) in terms of the minimal source symbol
probability and the alphabet size.

I. INTRODUCTION

It is well known that any memoryless source can be asymp-
totically losslessly compressed to its entropy [1]. However, in
the presence of resource constraints, a rate penalty, referred to
as redundancy, is unavoidable. In this work we focus on the
redundancy in the encoding of a memoryless source incurred
by the imposition of a strict end-to-end delay constraint d, i.e.,
under the requirement that n-th encoded symbol must always
be perfectly reproduced at the decoder by time n+ d.

Traditionally, lossless source coding is divided into three
classes: 1) Block-to-Variable (BV) codes (e.g. Huffman code),
where a fixed block of source symbols is encoded into a
variable length codeword, 2) Variable-to-Block (VB) codes
(e.g. Tunstall code), where the source sequence is parsed
according to a code-tree, and each phrase is encoded into a
fixed length codeword, and 3) Variable-to-Variable (VV) codes
(e.g., Khodak codes), where the source sequence is parsed and
each phrase is encoded into a variable length codeword. In the
BV regime, a delay constraint is usually interpreted as a block
length constraint, and the redundancy is known to decay at
best polynomially with the delay [2][3]. In the VB/VV regime
(where the delay is a random variable depending on the source
sequence) the delay constraint is translated into a maximal
phrase length constraint, and the redundancy again decays at
best polynomially with the delay, though sometimes faster than
in the BV case [4][5]1.

In a delay constrained setting, the traditional framework
above admits two (related) limitations. First, even within
that framework, there is an apparent disparity between delay
and block/phrase length. The reason block/phrase lengths are
identified with delay in the first place is since a repeated use of
the same code allows the source reproduction at block/phrase
length intervals. However, the delay can sometimes be sig-
nificantly shorter, for essentially the same reason: Consider a
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1These results hold even in the weaker case of an expected delay constraint

BV code of block length n = kd obtained by concatenating
k short BV codes of block length d. Clearly, the decoder can
reproduce symbols with a delay d, rather than the much larger
delay n. Waiting until the end of the block would mean the
encoder is “holding back” bits it is already certain of, clearly
an undesirable trait in a delay constrained setting. Of course,
the redundancy associated with such an encoder still decays
polynomially with d, which brings us to the second limitation.
In the traditional setting, the encoder never looks beyond the
end of the current block/phraes, in the sense that the source’s
prefix has no effect on the output of the encoder beyond that
point. The encoder is therefore being “reset” roughly every d
symbols. Loosely speaking, the penalty incurred by forcing
these regularly recurring reset points, is the source of the
polynomial delay of the redundancy.

With these observations in mind, we recall a lossless coding
technique of a different flavor that does not suffer from
the above shortcomings. In arithmetic coding [6], a source
sequence is sequentially mapped into nested subintervals of
the unit interval, with length equal to the sequence probability,
and the common most significant bits of the current subinterval
are emitted. This way, the encoder never holds back any
bits it is already certain of, by definition. Moreover, whereas
BV/VB/VV encoders never look beyond the end of the current
block/phrase, an arithmetic encoder always looks into the
(possibly infinite) future. Unfortunately, this comes at a cost
of an unbounded delay (though a bounded expected delay, see
[7], [8], [9]). Nevertheless, the notion of arithmetic coding
does point us in the right direction. In a delay constrained
framework, an encoder should by definition be sequential,
emitting all the bits it can at any given instance. Moreover,
a good delay constrained encoder should always strive to look
d steps ahead, avoiding “reset” points as much as possible.
As we shall see, these properties are nicely captured within
an interval mapping type framework.

In this paper, we introduce a general framework for lossless
delay constrained coding of a memoryless source, and study
the fundamental tradeoff between delay and redundancy. We
show that, in stark contrast to the polynomial decay within
the traditional framework, the redundancy R(P, d) associated
with a memoryless source P over a finite alphabet X , can be
made to decay exponentially with the delay d. Specifically, we
show that2 �

pmin

|X |

�8d

/ R(P, d) / pdmax

where pmin, pmax are the minimal and maximal source sym-
bol probabilities, and the lower bound holds for almost all

2By ad / bd we mean lim infd→∞
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sources3. We then tighten the upper bound and obtain

R(P, d) / 2−dH2(P )

where H2(P ) is the order 2 Rényi entropy of the source.
For our upper bound, we introduce a construction based on
mismatched arithmetic coding in conjunction with a fictitious
symbol insertion mechanism. For our lower bound, we provide
a useful “generalized interval mapping” representation for
delay constrained encoders.

The paper is organized as follows. Our framework is intro-
duced in Section II, and some basic lemmas are derived. In
Section III, the delay profile of mismatched arithmetic coding
is analyzed. This analysis is then applied in Section IV where
a lower bound on the redundancy-delay exponent is derived. In
Section V, a corresponding upper bound on the redundancy-
delay exponent for almost all sources is presented. Some final
remarks are given in Section VI.

II. PRELIMINARIES

A. Notations

We write s � t to indicate that a string s is a prefix of
a string t, and s ≺ t to indicate that s � t and s 6= t. The
Lebesgue measure of a set A ⊆ R is denoted by |A|. The
fractional part of a number a ∈ R is denoted by 〈a〉 def= a−bac.
The difference modulo-1 〈A−B〉 between two sets A,B ⊆ R
is the set of all numbers 〈a− b〉 where a ∈ A , b ∈ B. For any
function f : R 7→ R and any set A ⊆ R, we write f(A) for
the image of A under f . All logarithms are taken to the base
of 2. A total order of a finite set is called simply an order.

The following lemma is easily verified.
Lemma 1: Let A,B ⊆ R be any two sets. Then
(i) If b ∈ B and 〈c〉 6∈ 〈A−B〉, then b+ c 6∈ A.

(ii) If b ∈ B and 〈log c〉 6∈ 〈logA− logB〉, then bc 6∈ A.

B. Sources

Let X be a finite alphabet of source symbols. The set of all
length-n strings of symbols from X is denoted Xn, the set of
all finite length strings is denoted X ∗, and the set of all infinite
length strings is denoted X∞. We sometime use the notations
xn

def= x1x2 . . . xn and xnm
def= xmxm+1 . . . xn for finite source

strings, where the convention is that xnm = ∅ when m >
n. A discrete memoryless source (DMS) P is defined by a
probability mass function (p.m.f.) {P (x) : x ∈ X} which
naturally induces a product measure over X ∗, via P (st) =
P (s)P (t) for all s, t ∈ X ∗, where st is the concatenation of
s and t. Specifically, we denote by Pn the p.m.f. obtained by
restricting P to Xn. An infinite random source string emitted
by the source P will be denoted by X∞. The entropy of the
source is denoted H(P ). The kullback-Leibler distance, or
divergence, between two sources P,Q over the same alphabet
is denoted D(P‖Q). We write P � Q if Q(x) = 0 implies
P (x) = 0 for all x ∈ X . The set of all p.m.f.’s over X
is denoted P(X ). The type of a sequence xn ∈ Xn is the
p.m.f. Pxn ∈ P(X ) corresponding to the relative frequency

3Note that such a lower bound cannot hold for all sources, since dyadic
sources can attain zero redundancy with zero delay.

of symbols in xn. The set of all possible types of sequences xn

is denoted Pn(X ). The type class of any type Q ∈ Pn(X )
is the set TQ

def= {xn ∈ Xn : Pxn = Q}. For ε > 0, let
Pn
ε (X , P ) ⊆Pn(X ) be the subset of all types Q for which

‖P −Q‖∞ < ε.
The following facts are well known [12].
Lemma 2: For any type Q ∈Pn(X ) and any xn ∈ TQ:
(i) P (xn) = 2−n(D(Q‖P )+H(P )).

(ii) |Pn(X )|−12nH(Q) ≤ |TQ| ≤ 2n(H(Q).
(iii) |Pn(X )| =

�n+|X |−1
|X |−1

�
≤ (n+ 1)|X |.

(iv) (AEP) For any ε > 0,

lim
n→∞

P

� [
Q∈Pd

ε (X ,P )

TQ

�
= 1

The Rényi entropy [13] of order α of a source P is

Hα(P ) def=
1

1− α
log
X
x∈X

(P (x))α

Lemma 3 (From [14]): The Rényi entropy of order α > 1
admits the following variational characterization:

Hα(P ) = min
Q∈P(X )

§
α

α− 1
D(Q‖P ) +H(Q)

ª
For 0 < α < 1, replace the min with a max.

For any two sources P,Q over the same alphabet X , we
define

ν(P,Q) def= sup
x∈X :P (x)>0

P (x)
Q(x)

The following is easy to verify.
Lemma 4: ν(P,Q) ≥ 1 with equality if and only if P = Q.

C. Encoders

An encoder is a mapping E : X ∗ 7→ {0, 1}∗ such that
for any s ∈ X ∗, E(s) is the longest common prefix of the
bit strings {E(sx) : x ∈ X}. Namely, we are assuming the
encoder does not withhold any bits, at any given time it will
have emitted the longest prefix it was certain about. This will
be referred to as the integrity property. Note that the integrity
property implies in particular the consistency property, namely
that E(s) � E(sx).

An encoder E is associated with a delay function, which
returns the minimal number of symbols from a given (infinite)
suffix that needs to be encoded so that a given prefix can
be fully decoded. Formally, the delay function is a mapping
δE : X ∗ ×X∞ 7→ N ∪ {∞}, where δE(s, x∞) is the minimal
k ∈ N ∪ {0} such that E(sxk) � E(t) implies that s � t, for
any t ∈ X ∗. If no such k exists, then δE(s, x∞) def= ∞.

The delay profile associated with an encoder E and a source
P for a given prefix s, is the following extended-real-valued
r.v.:

∆E(s, P ) def= δE(s,X∞)

The delay profile associated with an encoder E and a source
P is then defined to be

∆E(P ) def= sup
s∈X∗

∆E(s, P )

Next, we define several families of encoders.



1) Lossless Encoders: An encoder is said to be lossless
w.r.t. P (where P is omitted when there is no confusion), if

P(∆E(P ) <∞) = 1,

The family of all encoders that are lossless w.r.t. P is denoted
L(P ).

2) Bounded Expected Delay Encoders: An encoder is said
to admit a bounded expected delay w.r.t. P (where P is omitted
when there is no confusion), if

E(∆E(P )) <∞

The family of all encoders with bounded expected delay w.r.t.
P is denoted B(P ). Clearly, B(P ) ⊂ L(P ).

3) Delay Constrained Encoders: An encoder is said to be
delay-constrained, if

sup
s∈X∗,t∈X∞

δE(s, t) <∞ (1)

More specifically, such an encoder is also said to be d-delay-
constrained, if the supremum above equals d. The family of
d-constrained encoders is denoted by Cd.4 Clearly, Cd ⊂ B(P )
for any source P .

4) Phrase/Block Constrained Encoders: An encoder is said
to be phrase-constrained, if for any x∞ ∈ X∞ there exists
a d ∈ N and an index sequence {ik ∈ N}∞k=1 such that 0 <
ik+1 − ik ≤ d+ 1, and

δE(xik , x∞ik+1) = 0 (2)

In this case we also say the encoder is d-phrase-constrained. In
the special case where ik = (d+1)k for all x∞ ∈ X∞, we say
the encoder is d-block-constrained The family of all d-phrase-
constrained (resp. d-block-constrained) encoders is denoted by
Cphrase
d (resp. Cblock

d ). Clearly, Cblock
d ⊂ Cphrase

d ⊂ Cd.
Remark 1: Any encoder E ∈ Cblock

d (resp. E ∈ Cphrase
d )

corresponds to a (possible time-varying) concatenation of BV
(resp. VV) codes with block length (resp. maximal phrase
length) d+ 1.

5) Interval-Mapping Encoders: A binary string bk ∈
{0, 1}k is said to represent a binary interval�

bk
� def= [0.b1b2, . . . bk0, 0.b1b2, . . . bk1) ⊆ [0,1)

For any set A ⊂ [0,1) we write bin(A) to denote the minimal
binary interval containing A, i.e.,

bin(A) def=
\

b∈{0,1}∗:A⊆[b)

[b)

The following lemma is easily observed.
Lemma 5: For any b, c ∈ {0, 1}∗,
(i) b � c ⇔ [c) ⊆ [b).

(ii) b 6� c and c 6� b ⇔ [b) ∩ [c) = ∅.
Let S

def= {[ a, b) | 0 ≤ a < b ≤ 1}. An encoder E is said
to be an interval-mapping encoder, if there exists a mapping
IE : X ∗ 7→ S, i.e., a mapping of finite source sequences
into subintervals of the unit interval, such that the following
properties are satisfied

4Note that growing dictionary encoders such as the LZ encoder [15] do not
belong to this family, as their delay grows unbounded.

(i) Minimality: [E(s)) = bin
�
IE(s)

�
for any s ∈ X ∗.

(ii) Disjoint nesting: For all s ∈ X ∗ and all distinct x, y ∈ X ,

IE(sx) ⊆ IE(s), IE(sx) ∩ IE(sy) = ∅

The minimality property means that an interval-mapping en-
coder emits the bit sequence representing the minimal binary
interval containing the interval IE(s). It is easily observed that
the minimality and disjoint nesting properties together imply
the integrity property. The family of interval mapping encoders
is denoted by I.

Let < be any order of X . A special case of an interval-
mapping encoder is an arithmetic encoder w.r.t. the order <
matched to a source P , which is defined as follows:

f1(x) def=
X
y<x

P (y)

fn(xn) def= fn−1(xn−1) + f1(xn)P (xn−1)

IE(xn) def= [fn(xn), fn(xn) + P (xn))

We omit the reference to a specific order < when there is no
confusion, or when the statement holds for any order.

6) Generalized Interval-Mapping Encoders: Let S∗ be the
set of all finite disjoint unions of subintervals from S. An
encoder E is said to be a generalized interval-mapping encoder
if there exists a mapping IE : X ∗ 7→ S∗ satisfying the
minimality and disjoint nesting properties above. The family
of generalized interval-mapping encoders is denoted by I∗.
Clearly, I ⊂ I∗.

The following lemma shows that any d-delay-constrained
encoder admits a generalized interval-mapping representation.

Lemma 6: Let E ∈ Cd. Then E can be represented as a
generalized interval-mapping encoder with

IE(s) =
[

xd∈Xd

�
E(sxd)

�
(3)

Hence, Cd ⊂ I∗.
Proof: See the Appendix.

Remark 2: The representation in (3) is a finite union of
(possibly overlapping) binary intervals. It is worth noting that
an arithmetic encoder matched to a source cannot generally be
written that way, as some of its intervals may only be written
as an infinite union of binary intervals. This sits well with the
fact that generally, an arithmetic encoder has an unbounded
delay.

D. Redundancy

The (per symbol) expected codelength at time n associated
with an encoder E and a memoryless source P is

L̄En(P ) def= n−1E|E(Xn)| (4)

where Xn ∼ Pn. The (per symbol) expected redundancy at
time n associated with an encoder E and a memoryless source
P is the gap between the expected codelength and the entropy
after n symbols have been encoded, i.e.,

REn(P ) def= L̄En −H(P )



The corresponding sup-redundancy and inf-redundancy are
defined as

R
E
(P ) def= lim sup

n→∞
REn(P ) , RE(P ) def= lim inf

n→∞
REn(P )

Let us define some useful quantities specific to generalized
interval-mapping encoders, which will enable us to bound their
redundancy in relatively simpler terms. A generalized interval-
mapping encoder E induces a measure over Xn, defined by

µEn(xn) def= |IE(xn)|

and a conditional induced measure, defined as

µEk(xk|xn) def=
µEn+k(xnxk)
µEn(xn)

Define:
REn(P ) def=

1
n
D
�
Pn‖µEn

�
and let

rd(xn) = D
�
P d‖µEd (·|xn)

�
be the d-instantaneous redundancy.

Remark 3: Note that µEn and µEk(·|xn) are not necessarily
probability distributions, as they may sum to less than unity.
However, for that exact same reason it still holds that REn(P ) ≥
0, rd(xn) ≥ 0.

The next lemma relates the interval-based notions of re-
dundancy defined above, to the actual operational definition
of redundancy of the associated generalized interval-mapping
encoders. This correspondence will allow us to think of
intervals instead of bits, and will play a central role in the
sequel.

Lemma 7: The following relations hold:

(i) For any E ∈ I∗,

REn(P ) ≤ REn(P )

(ii) For any E ∈ Cd, there exists a generalized interval-
mapping representation IE (e.g., the one in Lemma 6)
such that

REn(P ) ≥
�
n+ d

n

�
REn+d(P ) +

d

n
H(P )

RE(P ) = lim inf
n→∞

1
nd

nX
k=1

E(rd(Xk))

Proof: See the Appendix.
One would naturally be interested in the redundancy per-

formance that can be guaranteed by employing encoders of
different classes. In general, the expected redundancy REn of
an encoder E can be negative for some, or even all n. However,
the sup and inf-redundancy are nonnegative for all lossless
encoders, and bounds in the d-block/phrase constrained cases
are known.

Lemma 8: The following statements hold5:

5Recall that f(d) = O(g(d)) ⇒ lim supd→∞
�� f(d)

g(d)

�� < ∞, and

f(d) = Ω(g(d)) ⇒ lim infd→∞
�� f(d)

g(d)

�� > 0

(i) For any source P

inf
E∈L(P )

R
E
(P ) = inf

E∈B(P )
R
E
(P ) = inf

E∈L(P )
RE(P )

= inf
E∈B(P )

RE(P ) = 0

(ii) (From [1], [2]) For any source

inf
E∈Cblock

d

R
E
(P ) = O(d−1) , inf

E∈Cphrase
d

R
E
(P ) = O(d−

5
3 )

(iii) (From [3], [2]) For almost all sources,

inf
E∈Cblock

d

RE(P ) = Ω(d−1)

inf
E∈Cphrase

d

RE(P ) = Ω(d−2|X |−1−ε)

where ε > 0.
We see that employing block/phrase-constrained codes for

compression under a strict delay constraint, the redundancy
decays at best polynomially with the delay constraint6. The
main contribution of this paper is to show that in fact, the re-
dundancy can be made to decay exponentially with the delay, if
the more general family of delay-constrained encoders is used.
This reveals a fundamental difference between block/phrase
length and delay in lossless source coding.

The following lemma shows that for an optimal d-delay-
constrained encoder, the inf-redundancy and sup-redundancy
coincide.

Lemma 9: For any source P ,

inf
E∈Cd

R
E
(P ) = inf

E∈Cd
RE(P ) def= R(P, d)

Proof: See the Appendix.
Accordingly, R(P, d) defined above is called the redundancy-
delay function associated with the source P . The correspond-
ing inf-redundancy-delay and sup-redundancy-delay exponents
associated with P can now be defined:

E(P ) = lim sup
d→∞

−1
d

log R(P, d)

E(P ) = lim inf
d→∞

−1
d

log R(P, d)

Our main goal in this paper is to characterize R(P, d), E(P )
and E(P ).

III. THE DELAY PROFILE OF ARITHMETIC CODING

Consider a case where a source is encoded by a mis-
matched arithmetic encoder, namely where the encoder’s in-
terval lengths match a different source (see Subsection II-C).
In the next theorem we upper bound the probability that the
corresponding delay profile exceeds a given threshold. This
result will serve as a tool in the next section, where we lower
bound the redundancy-delay exponent.

Theorem 1: Suppose a source P ∈P(X ) is encoded using
an arithmetic encoder E matched to a source Q ∈P(X ). Then

P
�
∆E(P ) > d

�
≤ 2pdmax

�
d log

�
ν(P,Q)
pmax

�
+ κ

�
+ 2qdmax(ν(P,Q))d (5)

6This is in fact true even under the weaker expected delay constraint.



where κ = log
�√

2e
log e

�
≈ 1.4139 . . .

Corollary 1: Let E be an arithmetic encoder matched to a
source Q ∈P(X ). For any source P ∈P(X ), if

qmax · ν(P,Q) < 1

then the delay profile bound (5) is exponentially decaying with
d, hence the expected delay is finite, i.e., E ∈ B(P ). This
specifically holds for all non-deterministic P = Q.

Corollary 2: Suppose the source P is encoded using the
arithmetic encoder matched to the source. Then

P(∆E(P ) > d) ≤ 2pdmax (d log (1/pmax) + κ+ 1)

Remark 4: An exponential bound on the delay’s tail distri-
bution for matched arithmetic coding was originally observed
in [16][8]. However, that bound depends on both pmin and
pmax, and can therefore be arbitrarily loose. A bound depend-
ing only on pmax was originally obtained by the authors in [9],
where it is also shown how the proof of [16][8] can be tweaked
to remove the dependency on pmin. The bound obtained here
is tighter than both.

Remark 5: The bound in Theorem 1 can be further tight-
ened by observing that specific orders of the alphabet X are
better than others in terms of the bounding technique used
here. We do not pursue this direction, since we need an order-
independent bound in the sequel.

A. Proof Outline

Recall the definitions of an interval-mapping encoder and of
an arithmetic encoder in particular, given in Subsection II-C.
At time n, the sequence xn has been encoded into IE(xn), and
the decoder is so far aware only of the interval bin

�
IE(xn)

�
,

namely the minimal binary interval containing IE(xn). Thus
the decoder is able to decode xm, where m is maximal such
that bin

�
IE(xn)

�
⊆ IE(xm). Of course, m ≤ n where the

inequality is generally strict. After d more source letters are
fed to the encoder, xn+d is encoded into IE(xn+d), and the
entire sequence xn can be decoded at time n+ d if and only
if7

bin
�
IE(xn+d)

�
⊆ IE(xn). (6)

Now, consider the midpoint of bin
�
IE(xn)

�
which by the

minimality property (see Subsection II-C) is always contained
in IE(xn). If that midpoint is contained in IE(xn+d) (but
not as a left edge), then condition (6) cannot be satisfied; In
fact, in this case the encoder cannot yield even one further bit.
This observation can be generalized to a set of points which,
if contained in IE(xn+d), xn cannot be completely decoded.
For each of these points the encoder outputs a number of bits
which may enable the decoder to produce source symbols, but
not enough to fully decode xn. The encoding and decoding
delays are therefore treated here simultaneously, rather than
separately as in [8].

Remark 6: When P 6� Q there are “holes” in the interval-
mapping, namely intervals corresponding to symbols where
Q(x) > 0 but P (x) = 0. In this case, xn can be decoded at
time n+d if and only if bin

�
IE(xn+d)

�
∩IE(yn) = ∅ for any

7Here we are assuming that P � Q, see Remark 6.

yn 6= xn. Hence condition (6) is necessary and sufficient if
P � Q, and only sufficient otherwise. This point is important
to note since the case where P 6� Q appears in the sequel.

After having identified the above set of forbidden points,
we clearly need to analyze the probability of avoiding them
within the next d instances. Loosely speaking, for an arith-
metic encoder matched to the source P , the maximal symbol
probability pmax represents the “crudest resolution”, or the
“lowest rate” by which we shrink our intervals, hence intu-
itively dictates our ability to avoid hitting forbidden points.
Indeed, the probability that the encoder avoids these points
is roughly pdmax. For a mismatched encoder, we get a similar
expression involving pdmax, q

d
max and ν(P,Q) as a measure of

the mismatch between the encoder and the source.

B. The Forbidden Points Notion

We now introduce some notations and prove three lemmas,
required for the proof of Theorem 1. Let I = [a, b) ⊆ [0, 1)
be some interval, and p some point in that interval. We say
that p is strictly contained in I if p ∈ (a, b). We define the
left-adjacent of p w.r.t. I to be

`I(p)
def= min

¦
x ∈ [a, p) : ∃k ∈ Z+, x = p− 2−k

©
and the t-left-adjacent of p w.r.t. I as

`
(t)
I (p) def=

tz }| {
(`I ◦ `I ◦ · · · ◦ `I)(p) , `

(0)
I (p) def= p

Notice that `(t)I (p)→ a monotonically with t. We also define
the right-adjacent of p w.r.t I to be

rI(p)
def= max

¦
x ∈ (p, b) : ∃k ∈ Z+, x = p+ 2−k

©
and r

(t)
I (p) as the t-right-adjacent of p w.r.t. [a, b) similarly,

where now r
(t)
I (p)→ b monotonically. For any δ < b− a, the

adjacent δ-set of p w.r.t. I is defined as the set of all adjacents
that are not ”too close” to the edges of I:

Sδ(I, p)
def=
¦
x ∈ [a+ δ, b− δ) : ∃ t ∈ Z+ ∪ {0} ,

x = `(t)(p) ∨ x = r(t)(p)
©

Notice that for δ > p − a this set may contain only right-
adjacents, for δ > b− p only left-adjacents, for δ > b−a

2 it is
empty, and for δ = 0 it may be infinite.

Lemma 10: The size of Sδ(I, p) is upper bounded by

|Sδ(I, p)| ≤ 1 + 2 log
|I|
δ

(7)

For an interval I , let m(I) denote the midpoint of bin(I).
Note that m(I) ∈ I , by definition of bin(I) as the minimal
binary interval containing I . In what follows, we will be
specifically interested in the adjacent δ-set of m(I) w.r.t. I .
We therefore suppress the dependence on m(I) and write

Sδ(I) def= Sδ(I,m(I))

In particular, the set S0(I) will be referred to as the forbidden
points of I . The forbidden points play a central role in the
sequel, for the following reason:



Lemma 11: Condition (6) is satisfied if and only if
IE(xn+d) does not contain forbidden points of IE(xn), i.e.,

IE(xn+d) ∩ S0(IE(xn)) = ∅

Proof: Write m = m(IE(xn)) for short. As already
discussed, if m is strictly contained in IE(xn+d) then (6) is
not satisfied. Otherwise, assume IE(xn+d) lies to the left of
m. Clearly, if IE(xn+d) ⊆ [`(m),m), then bin

�
IE(xn+d)

�
⊆

[`(m),m) as well, hence (6) is satisfied. However, if `(m) is
strictly contained in IE(xn+d) then bin

�
IE(xn+d)

�
must be

the left half of bin
�
IE(xn)

�
, which by minimality cannot be

a subinterval of IE(xn), hence (6) is not satisfied. The same
rationale also applies to r(m). The lemma follows by iterating
the argument.

C. Proof of Theorem 1

The probability that the delay ∆E(xn, P ) is larger than d
is equal to (or upper bounded by, when P 6� Q, see Remark
6) the probability that (6) is not satisfied. By Lemma 11, this
in turn equals the probability that IE(Xn+d) contains none of
the forbidden points of IE(xn). To get a handle on this latter
probability, the following lemma is found useful.

Lemma 12: Suppose a source P is encoded using an arith-
metic encoder E matched to a source Q, and let pmax, qmax

be the corresponding maximal symbol probabilities. Then for
any a ∈ IE(xn),

P
�
a ∈ IE(Xn+d)|Xn = xn

�
≤ pdmax

and for any interval J ∈ IE(xn) sharing an endpoint with
IE(xn),

P(J ∩ IE(Xn+d) 6= ∅|Xn = xn)

≤
� |J |
|IE(xn)|

+ qdmax

�
(ν(P,Q))d

Proof: The set {IE(xnyd) : yd ∈ X d} is a partition of
IE(xn) into intervals, and a belongs to a single interval in the
partition. Therefore,

P
�
a ∈ IE(Xn+d)|Xn = xn

�
≤ max
yd∈Xd

P(Xn+d
n+1 = yd|Xn = xn) = pdmax (8)

establishing the first assertion. For the second assertion, write:

P(J ∩ IE(Xn+d) 6= ∅|Xn = xn) ≤
X

yd:J∩IE(xnyd) 6=∅

P (yd)

≤
X

yd:J∩IE(xnyd)6=∅

Q(yd) · (ν(P,Q))d

= (ν(P,Q))d
X

yd:J∩IE(xnyd) 6=∅

µEd (yd|xn)

≤
� |J |
|IE(xn)|

+ qdmax

�
(ν(P,Q))d (9)

where we have used the fact that maxyd µEd (yd|xn) = qdmax.

Write Sδ = Sδ(IE(xn)) for short. Note that Sδ ⊆ S0,
and that S0\Sδ is contained in two intervals of length δ both

sharing an edge with IE(xn). For any δ > 0, the delay’s tail
probability is bounded as follows:

P(∆E(xn, P ) > d)
(a)

≤ P
�
bin
�
IE(Xn+d)

�
6⊆ IE(xn)|Xn = xn

�
(b)
= P

�
S0 ∩ IE(Xn+d) 6= φ|Xn = xn

�
(c)

≤ P
�
(S0\Sδ) ∩ IE(Xn+d) 6= φ

��Xn = xn
�

+ P
�
Sδ ∩ IE(Xn+d) 6= φ|Xn = xn

�
(d)

≤ 2
�

δ

|IE(xn)|
+ qdmax

�
(ν(P,Q))d

+ pdmax|Sδ|
(e)

≤ 2
�

δ

|IE(xn)|
+ qdmax

�
(ν(P,Q))d

+ pdmax

�
1 + 2 log

|IE(xn)|
δ

�
(10)

The transitions are justified as follows:
(a) Condition (6) is sufficient, see discussion in Subsection

III-A. In most cases this would be an equality, as condition
(6) would be also necessary, see Remark 6.

(b) Lemma 11.
(c) Union bound over S0 = Sδ ∪ (S0 \ Sδ).
(d) Lemma 12, together with a union bound over the finite

number of elements in S0 \ Sδ .
Taking the derivative of the right-hand-side of (10) w.r.t. δ we
find that δ = log e

�
pmax
ν(P,Q)

�d
|IE(xn)| minimizes the bound.

Substituting into (10) and noting that the bound is independent
of xn, (5) is proved8.

IV. A LOWER BOUND FOR E(P )
In this section we use the delay’s probability tail distribution

mentioned in the previous section, to derive an upper bound
for the redundancy-delay function, via a specific arithmetic
coding scheme. We emphasize that unlike [17], the presented
scheme is error free, hence there is zero probability of buffer
overflow. Moreover, our figure of merit is the delay in source
symbols vs. the redundancy in bits per symbol.

A. A Finite Delay Result

Theorem 2: The redundancy-delay function for a source P
is upper bounded by

R(P, d) ≤ 2pd−c(pmax)
max

�
(d− c(pmax)) log (2/pmax)+1+κ

�2

(11)
where

c(x) =

¨
0 x < 1

16

2
�

1
log (2/x)

�
− 1 o.w.

.
Corollary 3: The inf-redundancy-delay exponent for a

source P is lower bounded by

E(P ) ≥ log(1/pmax)

8Observe that (10) holds even if δ > |IE(xn)|, in which case our bound
becomes trivial.



Proof: Let us first describe the high-level idea behind
the proof. We extend the source’s alphabet by adding two
fictitious symbols, and then encode the source using a slightly
mismatched arithmetic encoder. The encoder keeps track of
the decoding delay, and whenever the delay reaches d+ 1, it
inserts a fictitious symbol that nullifies the delay. There are
three key points: 1) There exists a mapping such that there is
always at least one fictitious symbol whose interval contains
no forbidden points, 2) The length assigned to the fictitious
symbols can be made very small, and 3) The probability of
insertion, bounded via Theorem 1, is also very small.

For any interval I = [a, b), let

ϕI(λ) def= (1− λ)a+ λb

and define define the two disjoint subintervals

IL
def= (ϕI (3/8) , ϕI (1/2)) , IR

def= (ϕI (1/2) , ϕI (5/8))

The first key point is established in the following Lemma.
Lemma 13: For any interval I ⊆ [0,1), either IL∩S0(I) =

∅ or IR ∩ S0(I) = ∅.
Proof of Lemma 13: Write m = m(IE(xn)) for short.

Without loss of generality, assume that m ≤ ϕI(1/2). There
are two cases:
(1) m ≤ ϕI(3/8): It is easily verified that the right adjacent

of m satisfies r(m) > ϕI(1/2), as otherwise

m+ 2(r(m)−m) ∈ I

contradicting the maximality in the definition of the right
adjacent. Therefore in this case IL contains no forbidden
points of I .

(2) m > ϕI(3/8): By our assumption m < ϕn(1/2), hence

r(m)−m ≥ ϕI(1)− ϕI(1/2)
2

Rewriting, we have

r(m) ≥ m+
ϕI(1)− ϕI(1/2)

2
≥ ϕI(5/8)

and therefore IR contains no forbidden points.

Returning to the proof of Theorem 2, define an extended
alphabet X+ = X ∪{xL, xR} where xL, xR are two fictitious
symbols. Let P+ ∈P(X+) be the corresponding extension of
the source P to X+, assigning zero probability to the fictitious
symbols. For 0 < ε < pmax, let P+

ε ∈ P(X+) be a source
with the following symbol probabilities:

P+
ε (x) =

§
(1− 2ε)P (x) x ∈ X
ε x ∈ {xL, xR}

Clearly, maxP+
ε (x) = (1− 2ε)pmax <

1
16 and ν(P+, P+

ε ) =
1

1−2ε . Let < be any order of X . Since P+
ε (x) < 1

16 for
all x ∈ X+, and since by Lemma 13 |IL| = |IR| = |I|/
8, then it is easy to see there exists a order <+ of X+

that preserves < over X , such that the arithmetic encoder E
w.r.t. <+ matched to P+

ε has the fictitious symbols xL, xR
mapped into intervals contained in IE(xn)L and IE(xn)R,
respectively. If the condition on pmax is not satisfied, then
we can always aggregate a few symbols into a super-symbol,

so that the maximal product probability satisfies the required
condition (the effect of this aggregation on the delay is treated
later on). To encode the source P+, let us now use the
arithmetic encoder for P+

ε above together with the following
fictitious symbol insertion algorithm: The encoder keeps track
of the decoding delay by emulating the decoder. Whenever
this delay reaches d + 1, the encoder finds which one of
IE(xn)L or IE(xn)R contains no forbidden point, and inserts
the corresponding fictitious symbol xL or xR respectively,
hence nullifying the decoding delay. This way, the decoding
delay never exceeds d and no errors are incurred.

We now bound the redundancy incurred by the encoder
E ′ ∈ Cd described above. There are two different sources of
redundancy. The first is due to the mismatch between P+

and P+
ε , and the second is due to the coding of the inserted

fictitious symbol. At each time k > d, the probability wk for
an insertion can be bounded via Theorem 1:

wk = P(∆E
′
(Xk−d, P ) > d) ≤ P(∆E

′
(P ) > d)

≤ 2pdmax

�
d log

�
1

(1− 2ε)pmax

�
+ κ

�
+ 2(1− 2ε)dpdmax(1− 2ε)−d

= 2pdmax

�
d log

�
1

(1− 2ε)pmax

�
+ κ+ 1

�
(12)

Now, let P+n be the n-product of P+, and write

RE
′

n (P ) = RE
′

n (P+)
(a)

≤ RE
′

n (P+) =
1
n
D(P+n‖µE

′

n )

(b)
=

1
n

nX
k=1

E
�
D(P+‖µE

′

1 (·|Xk−1))
�

(c)
= D(P+‖P+

ε ) +
1
n

log
1
ε

nX
k=1

wk

(d)

≤ 2 log
�

1
ε

�
pdmax

�
d log

�
1

(1− 2ε)pmax

�
+ κ+ 1

�
+ log

1
1− 2ε

(e)

≤ 2 log
�

1
ε

�
pdmax

�
2d log

�
2

pmax

�
+ κ+ 1

�
+ 4ε

The transitions are justified as follows:
(a) Lemma 7.
(b) The chain rule for the divergence, and the fact that P+n

is a product (memoryless) distribution.
(c) Given Xk−1, µE1 follows P+

ε with an extra multiplication
by ε if and only if Xk−1 is such that there is an
insertion. Hence the the expected divergence given Xk−1

always yields the term D(P+‖P+
ε ), and an extra log 1/ε

multiplied by the probability of an insertion wk.
(d) The bound for wk given in (12), and D(P+‖P+

ε ) =
log 1

1−2ε .
(e) log 1

1−2ε ≤ 4ε for 0 < ε < 1
16 .

Setting ε = pdmax, we get:

RE
′

n (P ) ≤ 2pdmax

�
d log

�
2

pmax

�
+ κ+ 1

�
d log

1
pmax

+ 4pdmax

≤ 2pdmax

�
d log

�
2

pmax

�
+ κ+ 1

�2

(13)



Finally, we address the case where pmax > 1
16 . As men-

tioned before, we aggregate a minimal number of source
symbols k into a super-symbol, such that pkmax < 1

16 . This
means that 1 < k <

�
4

log 1/pmax

�
. We now carry out the above

procedure for the k-product alphabet. However, since decoding
is performed k symbols at a time, we set our delay threshold
to be ed =

�
d+1
k − 1

�
. Substituting the above into (13) we get

RE
′

n (P ) ≤ 2pkedmax

�ed log(2/pkmax) + κ+ 1
�2

≤ 2pd−c(pmax)
max ((d− c(pmax)) log (2/pmax) + κ+ 1)2

Remark 7: The scheme described above also allows the
encoder to change the delay constraint on the fly, by inserting
a suitable fictitious symbol in accordance to the modified
constraint. Once the decoder is made aware of this change,
both encoder and decoder need to simultaneously adjust the
probability of the fictitious symbols.

B. An Asymptotic Result

Theorem 3: The inf-redundancy-delay exponent for a
source P is lower bounded by

E(P ) ≥ H2(P )

Proof of Theorem 3: We construct a unit delay encoder
for the product source P d using fictitious symbols in a similar
way as done in Theorem 2, with an additional random coding
argument. Let < be a order of X d such that all super-symbols
in the same type class are adjacent (and otherwise arbitrary).
Let <yd be a new order which is obtained by a rotation of
the order <, such that yd is the smallest element w.r.t. <yd ,
and the such that the largest element satisfying zd < yd is
the largest element w.r.t. <yd . Finally, let <+

yd
be the order

of X d+ def= X d ∪ {xL, xR} that preserves <yd over X d, such
that the arithmetic encoder E w.r.t. <+

yd
matched to P dε has the

fictitious symbols xL, xR mapped into intervals contained in
IE(xn)L and IE(xn)R, respectively, and are of the minimal
order satisfying this.

Let us now draw an i.i.d. sequence (Y d1 , Y
d
2 , . . .) with a

marginal P d, independent of the source sequence. At time
instance k (where time is now w.r.t. the product source),
we use an arithmetic encoder w.r.t. the random order <Y d

k
,

and matched to P dε . Denote the associated random interval-
mapping encoder by E . It is easy to see that for any point
a ∈ IE(xnd), the probability that the interval corresponding
to a type Q will include a is upper bounded pdmax plus the
probability of the type class TQ under P d, where by Lemma
2 the latter is upper bounded by 2−dD(Q‖P ). By the same
Lemma, the probability of any super-symbol within the type
class TQ is 2−d(D(Q‖P )+H(Q)). Thus,

P
�
a ∈ IE (Xn(d+1))|Xnd = xnd

�
≤

X
Q∈Pd(X )

�
2−dD(Q‖P ) + pdmax

�
2−d(D(Q‖P )+H(Q))

(14)

Taking the limit as d → ∞, and since there is only a
polynomial number of types, we obtain

lim
d→∞

−1
d

log P
�
a ∈ IE (Xn(d+1))|Xnd = xnd

�
≥ inf
Q∈P(X )

§
D(Q‖P ) +H(Q) + min

�
D(Q‖P ), log

1
pmax

�ª
Let V (Q) denote the function over which the infimum above is
taken, and assume without loss of generality that P is strictly
nonzero over X . V (Q) is continuous and the infimum is taken
over a compact set, hence is attained for some Q∗ ∈ P(X ).
Suppose that D(Q∗‖P ) > log 1/pmax. Let x ∈ X be such
that P (x) = pmax, and suppose there exists y ∈ X such
that P (y) < pmax and Q∗(y) > 0. Generate a perturbed
distribution Q† by increasing the probability assigned by
Q∗ to x by some β > 0, and decreasing the probability
assigned by Q∗ to y by the same β, leaving the other prob-
abilities unchanged. Clearly, we have D(Q†‖P ) + H(Q†) <
D(Q∗‖P )+H(Q∗). By continuity, there exists β small enough
such that D(Q†‖P ) > log 1/pmax. Hence V (Q†) < V (Q∗)
for such β, contradicting the minimality of Q∗. If such y
does not exist, then P (x) = pmax over the entire support
of Q∗. Therefore, D(Q∗‖P ) = log 1/pmax − H(Q∗) ≤
log 1/pmax, in contradiction to our assumption. We conclude
that D(Q∗‖P ) ≤ log 1/pmax. Hence,

lim
d→∞

− 1
d

log P
�
a ∈ IE (Xn(d+1))|Xnd = xnd

�
= min
Q∈P(X )

{2D(Q‖P ) +H(Q)} = H2(P )

where Lemma 3 was invoked in the last equality. Continuing
this line of argument, we can essentially replace pdmax with
2−dH2(P ) for d large enough, throughout our proofs. There-
fore, the redundancy averaged over the ensemble of random
d-delay constrained encoders is bounded by

E
�
RE (P )

�
= O

�
2−dH2(P )

�
(15)

and thus there exists a deterministic encoder E achieving at
least that expected performance, concluding the proof.

V. AN UPPER BOUND FOR E(P )

In this section we provide an upper bound for the sup-
redundancy-delay exponent for almost any memoryless source,
which is meant w.r.t. the Lebesgue measure over the proba-
bility simplex.

Theorem 4: For almost any memoryless source P , the sup-
redundancy-delay exponent is upper bounded by

E(P ) ≤ 8 log
� |X |
pmin

�
(16)

Remark 8: Note that (16) cannot hold for all sources, e.g.
for 2-adic sources we can have zero redundancy with zero
delay, hence an infinite exponent.

Remark 9: When restricted to interval-mapping encoders
only, a tighter upper bound of 8 log (1/pmin) holds.



A. Proof Outline

Since the proof is somewhat tedious, we find it instructive
to provide a rough outline under the assumption that the
encoder admits an interval-mapping representation (rather than
a generalized one). This assumption will be removed in the
proof itself. Due to the strict delay constraint, at any time
instance the encoder must map the next d symbols into
intervals that do not contain any forbidden points9. Typically
(for almost every interval), we will find an infinite number of
forbidden points concentrated near the edges, with a typical
“concentration region” whose size depends on the specific
interval. Clearly, the distances between consecutive points
diminishes exponentially to zero. Therefore, mapping symbols
to the concentration region will result in a significant mismatch
between the symbol probability and the interval length, and
this phenomena incurs redundancy. This observation is made
precise in Lemma 14.

Now, loosely speaking, there are two opposing strategies
the encoder may use when mapping symbols to intervals.
The first is to think short-range, namely to be as faithful to
the source as possible by assigning interval lengths closely
matching symbol probabilities (within the forbidden points
constraint). This will likely cause the next source interval to
have a relatively large concentration region, resulting in an
inevitable redundancy at the subsequent mapping. The second
strategy is to think long-range, by mapping to intervals with
a small concentration region. This in general cannot be done
while still being faithful to the source’s distribution, hence
this strategy also incurs in an inevitable redundancy. The latter
observation is made precise in Lemma 18. Our lower bound
results from the tension between these two counterbalancing
sources of redundancy.

B. Proof of Theorem 4

In light of Lemma 6, we can restrict our discussion to
generalized interval-mapping encoders of the form (3). How-
ever, we will find it more flexible to consider a broader
family of generalized interval-mapping encoders, satisfying
the following conditions:

(i) For any s ∈ X ∗, IE(s) is a union of at most |X |d
intervals.10

(ii) For any s ∈ X ∗, xd ∈ X d, IE(sxd) contains no forbid-
den points of any of the intervals comprising IE(s).11

Let I ⊆ [0,1) be a finite union of disjoint intervals {Ik}Kk=1.
Define

A(I) def=
K[
k=1

§ |a− b|
|I|

: a, b ∈ S(Ik), (a, b) ∩ S(Ik) = ∅
ª

and let

δI = δI(P, d) def= max{a ∈ A(I) : a < pdmin/4}
9As mentioned in Remark 6, avoiding forbidden points is not always a

necessary condition. However, in the next section we verify this is not a
restriction.

10To disambiguate the statement, we clarify that any two intervals whose
union is an interval are counted as a single interval.

11Note that this is satisfied by (3), since bin
�
IE(sxd)

�
is always contained

in one of the intervals comprising IE(s).

Namely, δI is the maximal distance between two consecutive
forbidden points in some Ik, normalized by the measure of I ,
that is smaller than pdmin/4.

Lemma 14: rd(xn) > δIE(xn)

Proof: Let I = IE(xn) throughout the proof. Let

zd
def= argmin

yd∈Yd
µEd (yd|xn)

and let γ def= µEd (zd|xn). If γ < δI , then zd has been assigned
with a measure at least four times smaller than its probability
P (zd). The d-instantaneous redundancy can be lower bounded
as follows:

rd(xn) = D(P d‖µd(·|xn))
(a)

≥ D(P (zd)‖γ)
(b)

≥ D(pdmin‖γ)

= pdmin log
pdmin

γ
+ (1− pdmin) log

1− pdmin

1− γ
(c)

≥ 2pdmin − (1− pdmin)
pdmin

1− pdmin

= pdmin ≥ δI

In (a) we have used the data processing inequality for the
divergence12. In (b) we have used the fact that γ < pdmin ≤
P (zd) together with the monotonicity of the scalar relative
entropy. In (c) we have used log(1−p) ≥ − p

1−p for 0 < p < 1.
If on the other hand γ ≥ δI , then all of the d-fold alphabet

has been assigned to a measure at most 1− δI which results
in a d-instantaneous redundancy lower bounded by

rd(xn) ≥ log
1

1− δI
≥ δI log e ≥ δI

A number a ∈ [0,1) is called (m, `)–constrained if

a = 0. 00 . . . 0| {z }
m′(a)

1φ . . . φ| {z }
m

00 . . . 0| {z }
`

φ . . .

where m′(a) is the length of the zeros prefix of a, and φ is
the “don’t care” symbol. The (m, `)–constrained region Cm,`
is the set of all such numbers. A number a ∈ [0,1) is called
(m, `)–violating if

a = 0. 00 . . . 0| {z }
m′(a)

1φ . . . φ| {z }
m

φ . . . . . . . . . . . . φ| {z }
` bits, not all ’0’ or all ’1’

φ . . . (17)

The (m, `)–violating region Vm,` is the set of all such num-
bers. The complement Vm,` = [0,1) \ Vm,` is called the
(m, `)–permissible region. Define the regions13

LCm,`
def= 〈− log Cm,`〉 , LVm,`

def= 〈− logVm,`〉

and let

D(1)
m,`

def= 〈LVm,` − LCm,`〉 , D(2)
m,`

def= 〈D(1)
m,` −D

(1)
m,`〉

The following two lemmas are easily observed.
Lemma 15: Let µ > 0. If a ∈ Vm,` and b ∈ Cm,`′ where

` < `′, then

|a− b| ≥ 2−m
′(a) · 2−(m+`) ≥ a

2
· 2−(m+`)

12Recall that µd(·|xn) sums to at most unity, hence can be complemented
to a probability distribution by adding an auxiliary symbol ω to X d and
defining P d(ω) = 0.

13The log and 〈·〉 operations are taken pointwise on the set elements.



Lemma 16: If I, J ⊆ [0,1) are each a union of at most M
intervals of size no larger than r each, then 〈I − J〉 can be
written as a union of at most M2+1 intervals of size no larger
than 2r each.

The (m, `)–permissible region within the interval [1/2, 1) is
comprised of 2m−1 + 1 subintervals. By definition, the size of
each is upper-bounded by 2−(m′+m+`)+1. Applying 〈− log(·)〉
to all such intervals in the [1/2, 1) interval (corresponding to
m′ = 0) will stretch each of them by a factor of at most
2 log e < 4. All other permissible intervals (those with m′ >
0) coincide on the unit interval after applying the 〈− log(·)〉
operator. Hence LVm,` can be written as a union of at most
2m−1 +1 intervals, each of size at most 2−(m+`)+3. A similar
argument shows that LVm,` can also be written that way14.
Appealing to Lemma 16, D(1)

m,` can be written as a union of at
most (2m−1+1)2+1 intervals, each of size at most 2−(m+`)+4.
Applying the Lemma again, we find that D(2)

m,` can be written
as a union of at most ((2m−1+1)2+1)2+1 ≤ 24m+1 intervals
each of size at most 2−(m+`)+5. Hence,

|D(2)
m,`| < 24m+1 · 2−(m+`)+5 = 23m−`+6 (18)

A source P is called (µ0, λ)-regular if there exists a pair
of symbols y, z ∈ X and m0 ∈ N such that for any µ ≥ µ0

λ =


log
P (y)
P (z)

·
6∈

∞[
m=m0

D(2)
m,dµme (19)

Remark 10: 0 ∈ D(2)
m,dµme for any m and µ, hence no

source can be (µ0, 0)–regular. Since for a dyadic source λ = 0
for any pair y, z, a dyadic source is never (µ0, λ)-regular.

The following two lemmas establish some properties of
(µ0, λ)-regularity.

Lemma 17: Let µ0 > 3. Almost any source is (µ0, λ)-
regular for some λ > 0.

Proof: Note that Cm,`+1 ⊂ Cm,` and Vm,`+1 ⊃ Vm,`,
hence D(2)

m,`+ ⊂ D
(2)
m,`. By (18), we have that for any µ0 > 3

lim
m0→∞

������ [µ≥µ0

∞[
m=m0

D(2)
m,dµme

������ = lim
m0→∞

����� ∞[
m=m0

D(2)
m,dµ0me

�����
≤ lim
m0→∞

∞X
m=m0

2m(3−µ0)+6

= lim
m0→∞

2m0(3−µ0)+6

1− 23−µ0
= 0

The statement of the lemma follows easily.
Define the following set:

Adα,β
def=
¦
xd ∈ X d : 〈− logP (xd)〉 6∈ D(1)

dαde,dβde

©
Lemma 18: Suppose P is a (µ0, λ)-regular source. Then

for any α, β > 0 with β/α > µ0

lim inf
d→∞

P (Adα,β) ≥ 1
2

14It can in fact be written as a union of less and smaller intervals, but that
adds nothing to our argument.

Proof: We will assume hereinafter that ε < 1
2pmin. Let

y, z be the symbols attaining λ, and define a transformation
σ : Pd(X ) 7→Pd(X ) on types:

σ(Q)(x) =

8<: Q(x) x 6∈ {y, z} ∨ Q(y) = 0
Q(x)− d−1 x = y ∧ Q(y) > 0
Q(x) + d−1 x = z ∧ Q(y) > 0

(20)
Namely, σ exchanges one appearance of y with the appearance
of z as long as this is possible, i.e., as long as Q(y) > 0. Now,
suppose d > m0

log(1/pmin) so that (19) is satisfied. Noting that
the set Adα,β is a union of type classes, let Q ∈Pd

ε (X , P ) be
a type such that TQ ∩ Adα,β = ∅. Clearly σ(Q) 6= Q, and for
any xd ∈ TQ and exd ∈ Tσ(Q),

〈− logP (exd)〉 = 〈− logP (xd) + λ〉

Now since λ 6∈ D(2)
m,dµme for any m ≥ m0 and µ > µ0,

and since β/α > µ0, then λ 6∈ D(2)
dαde,dβde. Recalling the

definition of D(2)
dαde,dβde and appealing to Lemma 1, we have

that 〈− logP (exd)〉 6∈ D(1)
dαde,dβde, hence we conclude that

σ(Q) ∈ Adα,β . Therefore, since σ is one-to-one when restricted
to Pd

ε (X , P ), then σ uniquely matches any type in Pd
ε (X , P )

that is outside Adα,β , to a type that is inside Adα,β .
Let us now get a handle on the variation in the probability

of a type class incurred by applying σ. It is easy to check that
for any Q ∈Pd

ε (X , P ), and n large enough,

P (Tσ(Q)) ≥ P (TQ)
�

(P (y)− ε)d
(P (z) + ε)d+ 1

��
P (z)
P (y)

�
≥ P (TQ)

�
1− ε

P (y)

��
1− ε+ d−1

P (z)

�
= P (TQ)

�
1 +O(ε) +O(d−1)

�
Namely, the probability of a type class for a type Q ∈
Pd
ε (X , P ) under P , remains almost the same after applying

σ. Therefore:

1− P (Adα,β)

≤ P

� [
Q 6∈Pd

ε (X ,P )

TQ

�
+

X
Q∈Pd

ε (X ,P ):TQ∩Adα,β=∅

P (TQ)

≤ o(1) +
X

Q∈Pd
ε (X ,P ),TQ∩Adα,β=∅

P (Tσ(Q))
1 +O(ε) +O(d−1)

≤ o(1) +
X

Q:TQ⊂Adα,β

P (TQ)
1 +O(ε) +O(d−1)

= o(1) +
P (Adα,β)

1 +O(ε) +O(d−1)

Where we have used the AEP (Lemma 2) in the second
inequality. The result now follows by rearranging the terms
above, taking the limit as d→∞, and noting that ε > 0 can
be taken to be arbitrarily small.



From this point forward we assume P is (µ0, λ)-regular
with µ0 > 3. Let µ < µ′, and define the indexed sets

Bk
def=
¦
xk ∈ X k : δIE(xk) > pµdmin

©
C(xk) def=

¦
yd ∈ X d : δIE(xkyd) > pµ

′d
min

©
For xk ∈ Bk, Lemma 14 implies that

rd(xk) > pµdmin (21)

On the other hand, xk 6∈ Bk implies that the
length of each interval comprising IE(xk) must be in
Cdd log(1/pmin)e,dµd log(1/pmin)e. Since there are at most |X |d
such intervals, it must be that

|IE(xk)| ∈ Cdαde,dβde (22)

where

α
def= log(1/pmin) + log |X | , β

def= µ log(1/pmin)− log |X |

Similarly, if yd 6∈ C(xk) then

|IE(xkyd)| ∈ Cdαde,dβ′de (23)

where
β′

def= µ′ log(1/pmin)− log |X |

For Lemma 18 to apply, we set µ, µ′ such that β/α > µ0 and
β′/α > µ0. This yields the constraints:

µ′ > µ > µ0 +
(µ0 + 1) log |X |

log (1/pmin)

In what follows, we will think of µ′ as arbitrarily close to µ.
For any xk 6∈ Bk we have:

E
�
rd(Xk) + rd(Xk+d) | Xk = xk

�
(a)

≥

� X
yd∈Ad

α,β
∩C(xk)

��P (yd)− µEd (yd|xk)
���2

+ pµ
′d

minP (C(xk))

=

� X
yd∈Ad

α,β
∩C(xk)

����P (yd)|IE(xk)| − |IE(xkyd)|
|IE(xk)|

����
�2

+ pµ
′d

minP (C(xk))

(b)

≥

�
1

|IE(xk)|
X

yd∈Ad
α,β
∩C(xk)

P (yd)|IE(xk)|
2

p
dαde+dβde
min

�2

+ pµ
′d

minP (C(xk))

=

 
P (Adα,β ∩ C(xk))

2

!2

· p2(α+β)d+4
min + pµ

′d
minP (C(xk))

(c)

≥ 1
4

h�
P (Adα,β ∩ C(xk))

�2
+ P (C(xk))

i
p
dmax(2(α+β),µ′)+4
min

(d)

≥ 1
4

h�
P (Adα,β)− P (Adα,β ∩ C(xk))

�2
+ P (Adα,β ∩ C(xk))

i
× p2d(µ+1) log (1/pmin)+4

min

(e)

≥ 1
4

�
P (Adα,β)

�2
· p2d(µ+1) log (1/pmin)+4

min

=
�

1
16

+ o(1)
�
· p2d(µ+1) log (1/pmin)+4

min (24)

The inequalities are justified as follows:
(a) Pinsker’s inequality for the divergence was used, together

with Lemma 14 and the nonnegativity of rd(·).
(b) (22) and (23) hold for all the union-of-intervals lengths

in the summation. Since 〈− logP (yd)〉 6∈ D(1)
dαde,dβde for

each yd in the summation, then appealing to Lemma 1,
we have that P (yd)|IE(xk)| ∈ Vdαde,dβ′de. The inequality
now follows by virtue of Lemma 15.

(c) P (A ∩ C) = P (A)− P (A ∩ C) and P (C) ≥ P (A ∩ C).
(d) µ′ can be taken to be arbitrarily close to µ.
(e) Lemma 18 was used to lower bound the probability of the

set Adα,β .
Combining (21) and (24), we get:

E(rd(Xk) + rd(Xk+d))

≥ min
�
pµdmin,

�
1
16

+ o(1)
�
· p2d(µ+1) log (1/pmin)+4

min

�
=
�

1
16

+ o(1)
�
· p2d(µ+1) log (1/pmin)+4

min

This holds for any d-constrained encoder E ∈ Cd, hence and
plugging into Lemma 7 we get

RE(P ) = lim inf
n→∞

1
2nd

nX
k=1

E(rd(Xk) + rd(Xk+d))

≥
�

1
16

+ o(1)
�
· 1

2d
· p2d(µ+1) log (1/pmin)+4

min

This lower bound holds for any µ > µ0 + (µ0+1) log |X |
log (1/pmin) .

Moreover, by Lemma 17 almost any source is (µ0, λ)-regular
for any µ0 > 3. Therefore, we have that for almost any source

RE(P ) ≥
�

1
16

+ o(1)
�
· 1

2d
· p

8d log
� |X|
pmin

�
+o(d)

min

and hence
E(P ) ≤ 8 log

� |X |
pmin

�
As mentioned in Remark 9, if the encoder is restricted to

be interval-mapping then a tighter upper bound 8 log(1/pmin)
holds. In this case IE(·) is a single interval rather than a union
of |X |d intervals, hence the proof remains the same up to the
substitution |X | ↔ 1.

VI. CONCLUSIONS

The redundancy in lossless coding of a memoryless source
incurred by imposing a strict end-to-end delay constraint was
analyzed, and shown to decay exponentially with the delay.
This should be juxtaposed against traditional results in source
coding, showing a polynomial decay of the redundancy with
the delay. In the traditional framework, the delay is identified
with the block length or the maximal phrase length, which in
our framework imposes a harsh restriction: The decoder is not
allowed to start reproducing source symbols in the midst of a
block/phrase, and the delay is repeatedly nullified at the end



of each block/phrase. This means the encoder is reset at these
instances, i.e., the prefix has no effect on its future behavior.
Loosely speaking, the gain of exponential versus polynomial
is reaped via a tighter control over the delay process, making
such reset events rare.

Nevertheless, the block/phrase based codes allow the en-
coder to start-over in roughly constant intervals, and therefore
such coding scheme are more efficient in a precision limited
setting. The more general encoders discussed in this paper can
hence attain their superior performance by allowing a finer
precision for keeping the encoder’s state. However, it should
be noted that only a finite precision is necessary to attain
exponentially decaying redundancy, and that precision can be
easily derived from Lemma 14. Therefore, the redundancy of
our interval-mapping encoder when operating in a resource
limited setting is dominated by the larger of two sources: The
aforementioned delay-precision constraint, and the external
complexity-precision constraint.

In our framework, we have isolated the impact of the delay
on the redundancy by letting the transmission time n go to
infinity. This also makes sense complexity-wise, since the
per-symbol encoding complexity is determined primarily by
the delay, and not by the length of the encoded sequence. In
practice however, a finite transmission time forces the encoder
to terminate the codeword, which in turn incurs an additional
penalty of O(n−1) in redundancy. Setting d = O(log n)
renders this additional redundancy term commensurate with
the redundancy incurred by the delay constraint. Therefore,
our results imply that the delay can be made logarithmic in the
block length, while maintaining the same order of redundancy.
Conversely, for almost all sources this is the best possible
tradeoff between block length and delay. A similar statement
in the context of universal source coding was mentioned in
[18], though for a somewhat different definition of the delay.

There is still a large gap between the lower and upper
bounds on the redundancy-delay exponent, where the upper
bound seems particularly loose. Furthermore, it remains to be
seen whether the zero-measure set of sources for which the
upper bound may fail to hold, can be reduced from the set of
sources that do not satisfy our intricate regularity condition, to
the set of dyadic sources only, which is the smallest possible.

APPENDIX

Proof of Lemma 6: Let us first show that IE satisfies
the conditions for a generalized interval-mapping encoder.
IE(sx) ⊆ IE(s) is immediate from the consistency property.
Let y, z ∈ X be distinct, and assume that IE(sy)∩IE(sz) 6= ∅.
Then since any two binary intervals are either disjoint or one
is contained in the other, then without loss of generality there
exist xd, exd such that

�
E(syxd)

�
⊆
�
E(szexd)�, i.e., such

that E(szexd) � E(syxd). Since δE(·, ·) ≤ d, it must be that
sz � syxd , in contradiction. This verifies the disjoint nesting
property.

By the consistency property, IE(s) ⊆ [E(s)). Suppose that
there exists a binary interval [b) such that IE(s) ⊆ [b) ⊂
[E(s)). Then E(s) ≺ b � E(sxd) for any xd ∈ X d, and
hence by the integrity property it must be that b � E(s), in

contradiction. Hence bin
�
IE(s)

�
= [E(s)) for any s ∈ X ∗,

verifying the minimality property.
Proof of Lemma 8: An arithmetic encoder matched to the

source P is well known to achieve zero asymptotic redundancy
[6], and a bounded expected delay [7], [8], [9]. Therefore

inf
E∈L(P )

R
E
(P ) ≤ inf

E∈B(P )
R
E
(P ) ≤ 0

Let E ∈ L(P ). Define Bd to be the set of all suffixes that
allow decoding of any prefix with delay at most d, i.e.,

Bd
def= {y∞ ∈ X∞ : δE(s, y∞) ≤ d ,∀s ∈ X ∗}

The lossless property implies that for any ε > 0 there exists
d large enough such that

P (Bd) ≥ 1− ε (25)

Define B̄d to be the set of all prefixes in Bd, i.e.,

B̄d
def= {zd ∈ X d : zd ≺ y∞ ∈ Bd}

Note that by the very definition of Bd, each prefix in B̄d must
appear in Bd with all possible suffixes. Therefore, P (B̄d) =
P (Bd) ≥ 1 − ε for d large enough. Furthermore the lossless
property also implies that for any zd ∈ B̄d, the BV codebook
Czd : Xn 7→ {0, 1}∗ defined by

Czd(xn) def= E(xnzd) (26)

is a prefix-free lossless codebook, and hence must satisfy
E|Czd(Xn)| ≥ nH(P ). Write:

L̄En+d(P ) =
1

n+ d

X
zd∈Xd

P (zd)
X

xn∈Xn
P (xn)|E(xnzd)|

≥ 1
n+ d

X
zd∈B̄d

P (zd)
X

xn∈Xn
P (xn)|E(xnzd)|

≥ 1
n+ d

X
zd∈B̄d

P (zd)E|Czd(Xn)|

≥ 1
n+ d

· P (B̄d) · nH(P ) ≥ (1− ε)n
n+ d

H(P )

Therefore,

RE = lim inf
n→∞

REn+d(P ) ≥ lim
n→∞

�
(1− ε)n
n+ d

− 1
�
H(P )

= −εH(P )

This holds for any ε > 0, hence RE ≥ 0.
Proof of Lemma 9: Let E ∈ Cd, and set any ε > 0. We

show that there exists another encoder E ′ ∈ Cd such that

R
E′

(P ) ≤ RE(P ) + ε

which immediately establishes the Lemma. The encoder E ′
will be constructed by properly terminating E . Set n large
enough such that both

n > d+ min{d, 2dRE(P )
ε

} (27)

and
REn(P ) ≤ RE(P ) + ε/4 (28)



For any xn−d ∈ Xn−d, define

yd(xn−d) def= argmin
zd∈Xd

{|E(xn−dzd)|}

namely, yd(xn−d) is the suffix that results in the minimal
codelength after having encoded xn−d. Clearly,

n−1E|E(Xn−dyd(Xn−d))| ≤ L̄En(P ) (29)

Construct the new encoder E ′ as follows. For any k < n−d,
let E ′(xk) = E(xk), and let E ′(xn−d) = E(xn−dyd(xn−d)).
For k > n−d, divide xk into blocks of equal size n−d (with
the last one possibly shorter), apply the rule above to each
separately, and let E ′(xk) be the concatenation thereof. Using
(29), we have

RE
′

n−d(P ) = (n− d)−1E|E ′(Xn−d)| −H(P )
(a)

≤ n

n− d
L̄En(P )−H(P ) ≤ n

n− d
REn(P )

(b)

≤ RE(P ) +
�

d

n− d
RE(P ) +

n

n− d
· ε/4

�
(c)

≤ RE(P ) + ε

where (a) follows from (29), (b) follows from (28), and (c)
follows from the assumption (27). Now, from the concatenated
construction we have that for any m > n− d

RE
′

m(P ) ≤ dm/(n− d)e
m

· (n− d) ·RE
′

n−d(P )

≤ m+ n− d
m

�
RE(P ) + ε

�
and hence

R
E′

(P ) = lim sup
m→∞

RE
′

m(P ) ≤ RE(P ) + ε

as desired.
Proof of Lemma 7:

(i)

REn(P ) = L̄En −H(P )

=
1
n

E
�
− log

���bin
�
IE(Xn)

�����−H(P )

≤ 1
n

�
E
�
− logµE(Xn)

�
−H(Pn)

�
=

1
n

X
xn∈Xn

P (xn) log
�
P (xn)
µE(xn)

�
= REn(P )

(ii) Consider the generalized interval mapping representation
of E given in Lemma 6. This representation satisfies
IE(xn+d) ⊆ IE(xn). Thus similarly to the above:

REn(P ) =
1
n

E
�
− log

���bin
�
IE(Xn)

�����−H(P )

≥ 1
n

�
E
�
− logµE(Xn+d)

�
− n

n+ d
H(Pn+d)

�
=
�
n+ d

n

�
REn+d(P ) +

d

n
H(P )

(iii) For any fixed d ∈ N,

1
nd

nX
k=1

Erd(Xk)

= −H(P ) + E

 
1
nd

nX
k=1

log
µEk(Xk)

µEk+d(Xk+d)

!
= −H(P ) +

1
nd

dX
k=1

E logµEk(Xk)

− 1
nd

dX
k=1

E logµEn+k(Xn+k)

≤ O(n−1)−H(P )− 1
n

E logµEn+d(X
n+d)

= O(n−1) +
�
n+ d

n

�
REn+d +

d

n
H(P )

≤ REn +O(n−1)

Similarly,

1
nd

nX
k=1

Erd(Xk) ≥ O(n−1)−H(P )− 1
n

E logµEn(Xn)

= REn +O(n−1) ≥ REn +O(n−1)

Proof of Lemma 10: It is easy to see that the number of
t-left-adjacents of p that are larger than a + δ is the number
of ones in the binary expansion of (p− a) up to resolution δ.
Similarly, the number of t-right-adjacents of p that are smaller
than b − δ is the number of ones in the binary expansion of
(b− p) up to resolution δ. Defining dxe+ def= max(dxe, 0), we
get:

|Sδ(I, p)| ≤ dlog
p− a
δ
e+ + dlog

b− p
δ
e+

≤
¨

2 + log (p−a)(b−p)
δ2 , δ < p− a, b− p

1 + log |b−a|δ , o.w.

≤ 1 + 2 log
|b− a|
δ
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